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Maximal height statistics for 1/f* signals
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Numerical and analytical results are presented for the maximal relative height distribution of stationary
periodic Gaussian signals (one-dimensional interfaces) displaying a 1/f* power spectrum. For 0=a <1 (re-
gime of decaying correlations), we observe that the mathematically established limiting distribution (Fisher-
Tippett-Gumbel distribution) is approached extremely slowly as the sample size increases. The convergence is
rapid for > 1 (regime of strong correlations) and a highly accurate picture gallery of distribution functions
can be constructed numerically. Analytical results can be obtained in the limit a— % and, for large «, by
perturbation expansion. Furthermore, using path integral techniques we derive a trace formula for the distri-
bution function, valid for a=2n even integer. From the latter we extract the small argument asymptote of the
distribution function whose analytic continuation to arbitrary a>1 is found to be in agreement with simula-
tions. Comparison of the extreme and roughness statistics of the interfaces reveals similarities in both the small

and large argument asymptotes of the distribution functions.
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I. INTRODUCTION

Whereas the extreme value statistics (EVS) of indepen-
dent and identically distributed (i.i.d.) random variables has
been thoroughly understood for a long time [1-3], our
knowledge about the EVS of correlated variables is less gen-
eral. Many natural processes, like flood-water levels, meteo-
rological parameters, and earthquake magnitudes [4—6], are,
however, characterized by large variations, a phenomenon
connected to long term correlations. Since extremal occur-
rences in physical quantities may be of great significance, it
is essential to develop an understanding of EVS in the pres-
ence of correlations. The past few years have seen increased
activity in this direction, with several particular cases worked
out in detail. For example, extremal height fluctuations in
(1+1)-dimensional Edwards-Wilkinson surfaces have been
investigated recently [7,8], and a nontrivial distribution func-
tion, the Airy distribution, was found analytically for the
stationary surface. Equivalently, considering the latter as a
time signal, this result relates to maximal displacements in
Brownian random walks. Other studies of surface fluctua-
tions also demonstrate the effect of correlations on EVS, and
several examples show that nontrivial EVS may emerge even
in the simplest surface evolution models [9—14]. Remarkable
connections have also been found between EVS and propa-
gating front solutions, exploited in such problems as random
fragmentation [15], directed polymers on Cayley trees [16],
and random binary-tree searches [17]. Correlations have also
been shown to play an important role in effecting extreme
events in weather records [18,19]. To summarize, problems
related to extremes regularly arise, and it is a fundamental
question whether they obey a limit distribution characteriz-
ing i.i.d. variables, or some special, nontrivial, statistics
emerges.
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In order to develop an intuition about the effect of corre-
lations, we shall consider here the EVS of periodic signals
displaying Gaussian fluctuations with 1/f* power spectra.
While we shall use the terminology of time signals, one-
dimensional stationary interfaces may equally be imagined,
with the same spatial spectrum, and periodic boundary con-
ditions. Systems with 1/f“ type fluctuations are abundant in
nature, with examples ranging from voltage fluctuations in
resistors [20], through temperature fluctuations in the oceans
[21], to climatological temperature records [22], to the num-
ber of stocks traded daily [23]. In addition, most of these
fluctuations appear to be Gaussian, thus our results may have
relevance in answering questions about the probability of
extreme events therein.

The 1/f* signals we consider are rather simple in the
sense that they decompose into independent modes in Fou-
rier space. The modes are not identically distributed, how-
ever, giving rise to temporal correlations, which are by now
well understood (see Sec. II). Correlations are tuned by a,
yielding signals with no correlations (a=0), decaying (0
< a@<1), and diverging correlations (1 =a< ). Thus 1/f*
processes are also well suited for studying the effect of a
wide range of correlations on extreme events in signals.

The central quantity we investigate is the maximum rela-
tive height (MRH), first studied in [24]. This is the highest
peak of a signal over a given time interval 7, measured from
the average level. Specifically, for each realization of the
signal, h(r), the MRH is

h,, == max h(r) —W, (1)

where max,h(r) is the peak of the signal and h(r) is its time
average. The MRH, #,,, varies from realization to realization,
and is therefore a random variable whose probability density
function (PDF), denoted by P(h,,), we would like to deter-
mine. The physical significance of h,, is obvious. For in-
stance, in a corroding surface it gives the maximal depth of
damage or, in general, it is the maximal peak of a surface. To
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name another example, when natural water level fluctuations
are considered, it is related to the necessary dam height.

Since the Fourier components of the signal are indepen-
dent variables, it is relatively easy to generate /,,’s numeri-
cally and thereby obtain sufficient statistics for sampling
P(h,,) (see Sec. II). Scanning through 0 < a < reveals that
a.=1 separates two regions with distinct behaviors in both
the limiting functions and the convergence to them as the
signal length (0=¢=T) tends to infinity. At @=0, the signal
is made up of i.i.d. variables and the EVS is governed by the
Fisher-Tippett-Gumbel (FTG) distribution, which is one of
the three possible limit distributions for i.i.d. variables in the
traditional categorization [25,26]. In fact, this property ex-
tends to the whole 0= a<1 interval [27], where the corre-
lations decay in a power-law fashion. Our results indicate
that, at least in the 0=a<0.5 region, not only the limit
distribution but the convergence to it closely follows the
logarithmically slow convergence which characterizes a=0
(Sec. TV). We find that the convergence further slows down
in the 0.5<@<0 region and it remains an open question
whether it is slower or not than logarithmic.

For a=1, the signal becomes rough, that is, the correla-
tions diverge with signal length, and we find that the quali-
tative features of the EVS for > 1 are the same as in the
a=2 case (Sec. V), exactly solved by Comtet and Majumdar
[7,8]. Namely, the divergent scale of the extreme values
(h,,y ~ TP, where B=(a—1)/2, is proportional to the scale of
the fluctuations in the signal (square root of the roughness in
interface language) and, furthermore, the large- and small-
argument asymptotes of the limiting distribution functions
are of similar type. In order to demonstrate these similarities,
we study the generalized, higher order, random acceleration
problem (a=even integer) in Sec. VI, and calculate the
propagator of this process. Using this result, we develop a
generalization of the trace formula (Sec. VII) which was in-
strumental in solving the @=2 problem. It turns out that the
trace formula can be written in a scaling form, which yields
the scale of the MRH values (Sec. VIII) as well as, under a
rather mild and natural assumption, the small-argument as-
ymptote of the MRH distribution (Sec. IX). Our numerical
evaluations of the distributions are all in excellent agreement
with the analytical results.

Analytical results can also be obtained in the a— % limit
(Sec. V), where the lowest frequency mode determines the
shape of the signal. We find that the MRH distribution has
the functional form ~x exp(-x?). Corrections to the a— %
limit may be obtained by keeping the lowest frequency
modes. With only three modes, a satisfactory description of
the whole @=6 region can be obtained (Sec. X). Since both
the =2 and a=% results suggest that the large-argument tail
of the distribution takes the form ~x”exp(—x?), we checked
this property for other a’s as well, and found it to be an
excellent description for all > 1.

The common scaling properties of the maximal height and
the root mean square height for «>1 lead us to compare the
MRH distributions to the roughness distributions of 1/f* in-
terfaces [28]. We find in Sec. XI that, in addition to the
general shape of the PDFs, both the small and large argument
asymptotes of these functions have analogous functional
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forms provided the replacement /,,— (roughness)'/? is made.
Similar conclusions can also be reached when P(h,,) is com-
pared with the distribution of maximal intensities [10].

Concluding remarks are collected in Sec. XII while de-
tails of the calculations of the generalized random accelera-
tion process and of the large « expansion are given in Ap-
pendixes A and B, respectively.

II. GAUSSIAN PERIODIC 1/f* SIGNALS

We consider Gaussian periodic signals h(f)=h(t+T) of
length 7. The probability density functional of A(z) is given
by

PLA(D)] ~ &), ()

where the effective action S can be formally defined in real
space but, in practice, is defined through its Fourier repre-
sentation

N2
S[e,;al = 20T, n¥c,|?. (3)

n=1

Here \ is a stiffness parameter which is set to (27)%*/2 here-
after (for the details and notation we follow [28]), and the
c,’s are the Fourier coefficients of h(z)

N/I2

hn= >

n=—N/2+1

CneZm'nt/T, (4)

where ¢, =c_, and their phases (for n# N/2) are independent
random variables uniformly distributed in the interval
[0,277], while ¢y, is real. Since ¢, does not appear in the
action (3) we can set the average of the signal to zero, i.e.,
cp=0. Note that the cutoff introduced by N means that the
time scale is not resolved below

7=T/IN (5)

and thus a measurement of h(f) yields effectively N data
points.

As one can see from Egs. (2) and (3), the amplitudes of
the Fourier modes are independent, Gaussian distributed
variables — but they are not identically distributed. Indeed,
the fluctuations increase with decreasing wave number, with
power spectrum

ety —, (©)
n

as befitting a 1/f* signal.

By scanning through a, systems of wide interest may be
generated. For example, a=0,1,2,4 correspond respectively
to white noise, 1/f noise [29], an Edwards-Wilkinson inter-
face [30] or Brownian curve, and a Mullins-Herring interface
[31,32] or random acceleration process [33].

An important feature of 1/f* signals is that correlations
may be tuned by the parameter «. Indeed, as one can see in
Fig. 1, an « scan leads us from the absence of correlations
(=0, white noise) to the limit of a deterministic signal («
=), In between @=0 and a—®, a,=1 separates decaying
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FIG. 1. Typical profiles of various 1/f* signals of length N
=T/7=8192. Note that, contrary to the visual illusion, the 0=«
<1 surfaces are flat, while the 1= a <o signals are rough. In the
former case, the amplitude of the signals is size independent, while
in the latter case the amplitude diverges with system size. For ease
of comparison, we have rescaled the signals to be approximately
equal in height.

(0=a<1) and strongly correlated (1 =a< ) signals. As
we shall see, the extreme statistics is different in these two
regions, thus it may be worth spelling out the distinctions
between decaying and strong correlations. We therefore
briefly describe some known results regarding the correla-
tions in 1/f* signals that will be relevant to the understand-
ing of the rest of the paper.

A global (integral) characteristic of correlations is given
by the mean-square fluctuations of the signal, called rough-
ness or width in surface terminology [34,35]

NI2

wy=[h(t) - =22 e,

n=1

% )

where the overbar indicates an average over ¢, and the second
equality shows that w, is the integrated power spectrum of
the system. This quantity has been much investigated [28,36]
and its probability distribution will be compared to the ex-
treme statistics of the surface in Sec. XI. For the present
purpose it is sufficient to recall that the ensemble average
over surfaces, (w,), yields the following asymptote for large
system sizes (T— ©):

7! forl<a= o,
wy) ~{InT/7 for a=1, (8)
™ for0=a<l.

Thus the fluctuations diverge with system size for 1=«
< in contrast to the finite fluctuations in the 0=a <1 re-
gime. Since diverging fluctuations are the sign of strong cor-
relations, this gives a reason for separating the 0= a<<1 and
1 =a < regions and attaching the name of decaying and
strong correlations to each, respectively.
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A more detailed characterization of the a dependence of
the correlation can be obtained by examining the correlation
function C,(¢,T)=(h(t')h(¢’ +1)) itself. A simple calculation
shows that the limit 7— o0 and ¢/T— finite yields the fol-
lowing scaling form:

C,(t,T)=T'F (1T), 9)

and that the nature of the correlations follows from the prop-
erties of scaling function F,,.

For 1 <a< o, the scaling function is of order O(1) and
F,(t/T—0) is finite. As a consequence,

Ca>1(t5T) ~ Ta_l, (10)

so that the correlations diverge in the 7— o limit. The diver-
gence is also present for =1 but it is only logarithmic,
C,(t,T)~1In(T/ 7). Systems with 1 =a <o can therefore be
regarded as strongly correlated.

For 0<a<1, the correlations are O(1) since the scaling
function behaves as F,(u)~u'"® for u<1 and, conse-
quently, one has a power law decay of correlations, indepen-
dent of system size

Coori(t,T) ~ 171172, (11)

In the bulk (z~ 1/2), the correlations quickly approach zero,
C,~1/T""% in the T— o limit. The correlations disappear
entirely for a=0 since, in this case, h(z) are i.i.d. variables.
Systems with 0= a<<1 have decaying correlations hence the
name used for their identification.

Thus we see how the regions 0=a <1 and | =@ <% are
distinguished. Furthermore, we also have a characterization
of correlations taken into account when we study the EVS of
periodic Gaussian 1/f* signals.

III. EXTREME STATISTICS: TECHNICALITIES

The quantity of interest is the distribution function P(h,,)
of the maximum height #,, of the signal measured from the
average, as defined in Eq. (1). In order to construct the his-
togram for the frequency distribution of %,,, we generate a
large number (=~10°-107) of signals, as prescribed by the
action S[c;; a] in Eq. (3) [37]. Each signal is Fourier trans-
formed and the real-space signal, which has zero average
(co=0), is used to determine the value of &,,. Finally, the &,,’s
are binned to build the histogram for the MRH distribution.

Since h,, is selected as the largest from N=T7/71 numbers,
P(h,,) obtained by the above recipe depends on N. The goal
of EVS is to find the limiting distribution which emerges for
N—o

P(Z) = limaNPN(hmzaNZ+bN). (12)
N—x

Here ay and by are introduced to take care of the possible
singularities in {#,,)y and in aﬁ:((hm—(hm)ﬁ) (one expects,
e.g., that (h,,)y_..— o for distributions with no finite upper
end point).

For any finite N, the parameters ay and by can be related
to {(h,,)y and oy and, in practice, one builds a scaled distri-
bution function where ay and by do not play any role. In the
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following, we shall employ two distinct scaling procedures.
If the large N behaviors of (h,)y and oy coincide (e.g.,
(h,)ny~ oy~ N? then we use scaling by the average by in-
troducing the variable

X= hm/<hm>N (13)

which ensures that (x)=1 and makes the corresponding scal-
ing function

q)(x) = lim q)N(x) = lim <hm>NPN(<hm>Nx) (14)
N—x N—

devoid of any fitting parameters.

If <h,,)y and oy scale differently in the large N limit then
the above procedure leads either to a delta function or to an
ever widening distribution. One can deal with this problem
by measuring A, from (A,,) in units of the standard deviation,
i.e., by introducing the scaling variable

hm _ <hm>

= m = (h,, — (h))oN. (15)

Using y will be called o scaling and the corresponding scal-

ing function will be denoted by ®(y). Provided the limit N
— 00 exists,

y

D(y) = Jim Dy(y) = lim oy Py + o) (16)

is again a function without any fitting parameters.

IV. EVS IN THE REGIME OF DECAYING CORRELATIONS
0=a<l)

In the white-noise limit «— 0, each point on the signal
constitutes a random i.i.d. variable with Gaussian distribu-
tion. Under these conditions, the MRH limiting distribution
falls under the domain of attraction of the Fisher-Tippett-
Gumbel distribution [1,2]. In fact, in the range 0=a <1, it
has been shown that the decaying correlations are too weak
to change the FTG limit [27]. Therefore, in the regime of
decaying correlations, the MRH statistics of 1/f“ signals
may be said to be universal.

However, in the case of i.i.d. random variables drawn
from a Gaussian parent distribution (i.e., for a=0), it has
also been established that the convergence in N towards the
limiting FTG distribution is logarithmically slow [1,38,39].
Therefore, in practice, the MRH distribution may appear dif-
ferent from FTG. An even worse rate of convergence may be
expected with increasing «, since, heuristically, increasing
correlations decrease the effective number of degrees of free-
dom. In Fig. 2 we illustrate this trend by comparing numeri-
cal MRH distributions for a range of « but fixed N with the
FTG limiting distribution. For a<<0.5 the numerical distri-
butions are practically indistinguishable from the case «
=0.5. This figure serves as a warning when comparing real-
world data with known extreme value distributions.

We note here that Eichner et al. [40] have recently inves-
tigated EVS for a=0.6. Although they do not spell it out
explicitly, their Figs. 2 and 3 do demonstrate that the conver-
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FIG. 2. (Color online) Numerically constructed MRH distribu-
tions for @=0.5,0.8, and 1.0 for system size N=T/7=16384. The
FTG distribution is shown by the thick black line. Each distribution
is rescaled to zero mean and unit standard deviation. It should be
mentioned that the @<<0.5 curves are not displayed since they are
indistinguishable from the @=0.5 case.

gence at @=0.6 (Fig. 3) is slower than at a=0 (Fig. 2), in
agreement with our findings described above.

In order to shed more light on convergence rates towards
limiting distributions, we have measured the skewness v;
=K3/ Kg/ 2 where «, is the nth cumulant of the MRH distribu-
tion function. The results for a range of @ and N are dis-
played in Fig. 3. From this plot one can discern a number of
remarkable features. First, in the range 0=a <1, we note
that the measured skewnesses are far from the skewness of
the FTG distribution (approximately 1.140...), even for the
largest system size available. Second, for a=0, we know
theoretically that the convergence rate is logarithmically
slow, but, somewhat surprisingly, this convergence rate ap-
pears to be shared for all «=0.5, after which convergence
slows down markedly. Thus the universality in the ultimate
limiting distribution for 0=« <1 may not carry over to a
universality in the finite-size corrections. Note that if we did

1'2 T T T T T T T T T
o _—% 1 140 N = 16384 |
i — N =8192
N —— N =409 |
— N =2048
— N - 1024
= o09f 1
s
0.8 i X3 1
8 ~0.700 ||
% =0 i
0.7 *?i‘k”‘\f_ T +_ ~0.631
apen =R
0.6 L 1 ! I T L L i
0 05 1 15 2 254 6 8 10

FIG. 3. (Color online) Strong finite-size effects at low values of
« as seen in the scaled skewness, y;=kx3/ Kg/ 2 of the MRH distri-
bution. Note the exponential increasing system sizes N=T/7 used
for comparisons. Note also that the scale of the horizontal axis
changes at @=2.5. The limiting value of 7y; for a<1 is
~1.140. Other exactly known values are 7y;(e=2)=0.700 and
vi(a@— ©)=0.631.
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not know the limit but would try to determine it from finite-
N skewnesses, then for <1 we would be wrong to con-
clude that the asymptotic value had nearly been reached.

The case of strong correlations is discussed in the follow-
ing sections. Here, we just observe that the skewnesses for
a>1 rapidly collapse for different N, and that they are vir-
tually indistinguishable from each other for @=1.5. In this
case we may be quite sure that the skewnesses have practi-
cally reached their limiting values, since they match their
corresponding theoretical values for a=2 and % with high
accuracy. As we shall argue in Sec. VIII, in contrast to the
very slow convergence for 0= a <1, convergence rate im-
proves as it becomes a power law for a> 1.

V. STRONG-CORRELATION REGIME: EXACT RESULTS
FOR a=2 AND a=%

The 1= a <o region is characterized by diverging mean-
square fluctuations [see Eq. (8)]. Since (h,,)= \/ngvT)g, this is
also a range where the characteristic scale of (h,,) diverges
with the size of the system at least as (f,)~7T\*"2. An
important exact result in the strongly correlated regime is
related to the Brownian random walk (a=2). Majumdar and
Comtet [7,8] have shown that (k,)~\T and, furthermore,
they calculated the MRH distribution using path-integral
techniques as well as by making a mapping to the problem of
the area distribution under a Brownian excursion [41,42].
The resulting distribution is known as the Airy distribution.
Under scaling by the average (x=h,,/{h,,)), the Airy distri-
bution can be written as follows (note that slightly different
scaling has been used in [7,8]):

—
,E" 130 = U= 516,4/3,0,27). (17)

N X n=1

Dd(x) =

Here U(a,b,z) is the confluent hypergeometric function and
v,=(2/m)(2a,/3)? is related to the nth zero —a,, of the Airy
function.

The small and large x asymptotes of ®(x) have also been
calculated [7,8] with the results

_
V30 o

d(x —0) ~ e V¥ (18)

\NTTX
and
In®(x — %)~ —3mx*/4. (19)

It is noteworthy that the above asymptotes are quite close in
functional form to those obtained for the width distribution
of the Edwards-Wilkinson model [36].

The plot of ®(x) is shown on Fig. 4(a) where a rather fast
convergence to the limiting function can be seen (the con-
vergence rate is 7~/ as calculated in [43]). It is remarkable
that the convergence is even faster if o scaling is used [Fig.
4(b)]. The reason for this is the finite-size scaling of higher
cumulants of the MRH distribution function. At this point we
present this just as a numerical observation. A detailed study
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FIG. 4. (Color online) Convergence of the MRH distribution for
a=2 to its exactly known N— oo limit [7]. Results for same system
sizes are displayed in both panels using scaling by the average (x
=h,,/{h,)) and o scaling [y=(h,,—(h,,))/ o] in panels (a) and (b),
respectively. Note that, due to the remarkably fast convergence in o
scaling, the curves in panel (b) are practically indistinguishable.

of the finite-size scaling of MRH will be published sepa-
rately [44].

The review of the properties of the MRH distribution for
a=2 presented above gives a guidance for the discussion of
EVS in the strong correlation regime. As we shall see below,
the basic properties of EVS ((#,,) ~ \/@, the general shape
of ®(x), the structure of the small- and large-x asymptotics
of ®(x), and the fast convergence to the limiting function)
are similar in the whole 1 <a << region.

The other analytically solvable case is the a— %0 limit.
Indeed, here only the n=1 mode survives, and the resulting
signal h(t)=|c,|sin(27t/T+¢). Consequently, h,,=|c,| and
the distribution of £, is just the distribution of |c;| given by
P(|cy]) ~ei lexp[=(2m)*T'=*|c,|*]. Using the average scal-
ing, the scaling function ®_,(x)=(h,,)P({h,,)x) becomes

®..(x) = gxﬁ(x)e_mzm (20)

where 6(x) is Heaviside’s step function. Comparing the
above expression with the asymptotes (18) and (19), one can
see that, in addition to the disappearance of the small x sin-
gularity, the large x asymptote has acquired an extra x factor.
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VI. THE PROPAGATOR OF THE GENERALIZED
RANDOM ACCELERATION PROCESS: a=2n

The derivation of subsequent analytical results on the
scale of (h,,), and on the small A, asymptote of the MRH
distribution is based on the observation that 1/f* signals are
actually paths of generalized random acceleration processes,
provided that @=2n is an even integer. This allows a path-
integral representation of the MRH distribution function
(Sec. VII) from which rather general conclusions can be
drawn and, furthermore, as indicated by the simulations, the
results can be extended to any 1 <a <.

The construction of the MRH distribution function in the
path integral approach involves the calculation of a normal-
ization factor which, in turn, requires the knowledge of the
propagator (also called two-time Green-function, or transi-
tion probability) of the random acceleration process. Here we
compute this propagator, i.e., the probability density of a
position of the stochastic path at some time ¢ conditioned on
the initial point.

The equation of motion of the 1/f2" trajectory reads

dh
W) = T(” - &), 1)

where &(r) is white noise with zero mean and correlation
(&(t)&(t"))=8(r—1"). Note that h(r) corresponds to the (n
—1)st integral of the Brownian random walk trajectory.
Equation (21) can be rewritten as a vector Langevin equation

2= &), a=h. (22)

For n=1 we have the usual random walk, for n=2 the ran-
dom acceleration problem [33], also extensively studied,
while for higher n’s one can speak about the generalized
random acceleration processes [45,46]. We are interested in
the conditional probability that after time 7 the trajectory is at
z2=(21,22,...,2,) provided it started from z°. In the follow-
ing, we denote this propagator by G,(z|z°;1). Its subscript
indicates the dimension of the vector arguments, and it ob-
viously satisfies the recursion relation

Zkz =15 (k= 2537 s 7n)7

G,(zlz"1) = f 241G (2l2°31), (23)
where the integration eliminates the dependence on z, ;, too.
The propagator has Dirac delta initial condition, G,(z|z°;0)
=8"(z-z"), and satisfies the Fokker-Planck equation, ob-
tained in a standard way from the Langevin equation [47],

9,G,=-H’G,, (24)
1 n—1

Hg =- Efﬁ + E k01> (25)
k=1

where d, and d, are derivatives with respect to ¢ and gz, re-

spectively. The superscript of ﬁ?l refers to the fact that we
consider here the time evolution (21) without further con-
straints. The propagator has been calculated in previous stud-
ies up to n=>5 [48,46]. We make an ansatz that matches these
functions and we show it to be valid for general n
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G,(zl%10) =1 G(a* - z—a"* - 2°;0y), (26)
k=1

where G(z;0)=exp(-z%/202)/ V270 is a Gaussian PDF with
zero mean and variance o2, z° is the initial condition vector,
and the vector a® only has nonzero components for i
=1,2,...,k, i.e., for [>k we have asz. In order to remove
ambiguity we set a’,i:l. The a*,a"*, 0, are time dependent
quantities to be determined. The above formula amounts to
the recursion relation

G,(zl2";0) =G, ,(z[z";nG@" - z—a"" - 2% 0,). (27)

Substitution of this ansatz into Eq. (24) leads to equations for
the unknown parameters. The solution of the equations as
described in Appendix A yields

(=" n+k-2)

- , 28
= T2 )1 (k= 1)! (n—K)! (282)
ay" = (- 1)"*af, (28b)
=12
o, (28¢)

oo —12n-3)1°

For illustration, we use the above expressions to calculate
and display explicitly the n=4 propagator. Noting that the
original coordinate, velocity, acceleration, and its time de-
rivative are given by

h=Z4, V=23, aA=2p, li=Z1, (29)

respectively, the propagator can be written in the form

7201105
—a5 ¢ (30)

where —A/2 is the sum of the exponents of the Gaussians in
Eq. (26), namely

Gy(zl2%0) =

4
A =2Ak’ (31)
k=1
with
1 0y2
A= ;(Zl -z7)7, (32a)
12 t 2
Ay= ?{Zz—zg—g(m +z?)} . (32b)
720 t £ 2
A3=t_5{z3—2g— 5(Z2+Zg)+ E(zl—z?)] , (32¢)
100800 t
=77 {24—22—5(Z3+z§)
1 o NE
+B(Z2_Z2)_E)(Z1+Z1) . (32d)
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Up to the k=3 term this incorporates the propagators of the
random walk, k=1, random acceleration, k=2, and random
velocity of acceleration, k=3, and the above expressions are
in agreement with previous results [46]. Note that, indepen-
dently of k, we have aﬁ:ag’k= 1, and

a_ =-ad)t =12, (33)

but for /=k-2 the a}’s will vary with both [ and k.

Later, for the construction of the formula for the MRH
distribution, we will need a special property of the propaga-
tor. Namely, if we consider the propagator of a periodic path
of length T and integrate it over the common values of the
velocity, acceleration, etc., at the end points, we get the sur-
prisingly simple result

n—1

[1d0G,GR" ) =T "2 2m2. (34)
k=1

Indeed, the periodic propagator does not depend on zg; the
integration over 22_1 cancels the normalizing constant of the
nth Gaussian but brings in a factor of 1/7. The integration
over z_, does the same with the (n—1)st Gaussian, and so
on, until finally we are left with the norm factor of the n
=1 Gaussian, 1/2#T, divided by 7! as shown in Eq.
(34). The key to this remarkable cancellation of the total
numeric prefactor of the propagator is that Eq. (33) holds
uniformly for all k’s.

VII. PATH INTEGRAL FORMALISM AND THE TRACE
FORMULA FOR THE MRH (a=2n)

For @=2 Majumdar and Comtet [7,8] introduced a path
integral representation of the MRH distribution. The tech-
nique allowed for the formulation of the PDF in terms of the
spectrum of a quantum mechanical, one-dimensional, Hamil-

tonian H with a hard wall and elsewhere linear potential,

through the trace of e™#7, valid in the case of periodic bound-

ary conditions. The spectrum is known to consist of the Airy
zeros, so the trace formula resulted in the PDF called the
Airy distribution.

In what follows we show that, in the case of periodic
boundary conditions, for a general a=2n, n=2,3,... an
analogous trace formula holds. Remarkably, the formula
turns out to be essentially the same as in the =2 case, with

the only difference that now a generalized “Hamiltonian” I:In

appears. However, the I:I,,, a differential operator in an n
dimensional space, is no longer Hermitian. Whereas we shall
not solve the spectral problem necessary for the calculation
of the MRH distribution, this formulation will allow us to (i)
determine the scale of the MRH as function of 7 and (ii) give
explicitly the initial asymptote of the PDF, with the only
undetermined parameter being the ground state energy of the

Hamiltonian I:In. What is more, the results (i) and (ii) will
lend themselves to a continuation to real «’s, so the use of
the path integral technique extends beyond its original region
of validity, the generalized random acceleration problem «
=2n.

PHYSICAL REVIEW E 75, 021123 (2007)

We begin with the probability functional of a periodic
path A(r), where & is measured from the time average,

T T
Plh()]=A exp(— %f dt[h[”](t)]2> 5<f dth(t)).
0

0
(35)

Following [7,8] we have introduced a normalizing coeffi-
cient A, ensuring

f D,h(t)Plh(]=1, (36)
PBC

where PBC indicates that periodic boundary conditions for
all derivatives of the path up to A" is understood. The
measure D,h(r) is defined such that the propagator
G,(z|z°;T) of Sec. VI is a path integral without extra nor-
malization, and the boundary conditions of the integral are
specified by the arguments of G, i.e.,

1 (7
Gy(zlz’: 1) = f Dnh(t)exp(—g f dt[h[”](t)P), (37)
0
with A" K(0)=z), W"*(T)=z,, where k=1,...,n. This
D,h(t) is in fact the measure leading naturally to the
quantum-mechanical-like operator representation of the path
integral

G,(2l2%:T) = (Ze ™)), (38)

where HY is given by Eq. (25), and [z°)((z|) are the right
(left) eigenvectors corresponding to the n-dimensional posi-
tions indicated therein. Note that, since this Hamiltonian is
non-Hermitian for n=2, the left and right eigenfunctions are
different in general.

A third representation of the propagator we shall utilize
comes from a path integral by a measure of one order lower
as

T
G (2|2%T) = J 'Dnh(t)exp(— % f dt[h[”](t)]2>
0

T
X 5(1,”1— f h(t)dz—z3+1>. (39)

0

Here the Dirac delta produces the normalized density for the
added area variable z,,;. Note that if we take into account
Eq. (37) then the consistency relation (23) immediately fol-
lows.

In order to determine the normalization coefficient A in
Eq. (35), we express the equal-points propagator comple-
mented with the area variable set to zero at both ends. By
integrating over the path except for a single point and using
Eqgs. (35) and (39)

D,h(1)PLA(1)] = AG,,,(z°,0[°,0:7),
PBC:’

Pppc(z®) =

(40)

where the mark PBC:z° refers to the time derivatives at the
ends fixed at AM(0)=h¥(T)=7",, k=0,...,n—1. The
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Pppc(z°) is the joint probability density of AlKl(r)=z" ’s in a
periodic path at any fixed time 7, so as a by-product we
obtained that density in terms of the propagator, explicitly
given in Sec. VI. That joint probability density is obviously
normalized to unity. However, we know from Eq. (34) that
the integral of the right-hand side is independent of the z°, st
variable, and therefore we have

A=T"227. (41)

For n=1 the normalizing coefficient derived in [7,8] is re-
covered.

The integrated distribution M(h,,;T) of the MRH, i.e., the
probability that the maximum does not exceed #,,, has been
formulated in terms of a path integral in [7,8]. That expres-
sion is valid for any path density P[A(z)] and reads formally
as

hm
M(h,,;T) =f dh P(h;T)

= f Dh(tyPLR(O]L] 6(h,, - h(2)). (42)
PBC t

Note that here P(h,,;T) is the density of MRH. Changing the
integration variable and then introducing the hard wall po-
tential V(h) =00 for h<0 and V(h)=0 for 4>0, one obtains

M(h,:T)= |  Dh(yPlh,~h(0]LT 6(h(1)
PBC 1
= f Dh(t)PLh,, — h(r) e~ o Vo) (43)
PBC
Using the specific form (35) of the probability functional we
find
T
M(h,,;T) = Af Dh(t)é(hmT— f dt h(t))
PBC 0

T
X expl— J dt{%(h[n]y + Vo(h(t))}:| .
0

(44)
Next, we introduce the scaled Laplace transform of the inte-
grated MRH distribution

©

Ku;T)=T f dh,,e™"mTM(h,,;T)
0

T
=A f Dh(t)exp|:— f dt{l(h[ﬂ)%ux/(h(z))ﬂ,
PBC 0 2

(45)

where the potential V(h)=o for h<0 and V(h)=h for h>0.

In order to find K(u;T), we write down the evolution
equation for the PDF of the position and its derivatives
P,(z;1) corresponding to the above path probability,

PHYSICAL REVIEW E 75, 021123 (2007)

aP,=-H,u)P,, (46)
H,(u) = PAIS +uV(z,), (47)

where I:IS was given in Eq. (25) and the variables z; are
defined by Eq. (22). Thus the Laplace transform can be writ-
ten in short as

K(u;T) = A Trexp(— H,(u)T). (48)

It is straightforward to show that the eigenvalues E,, (1)

of I:I,,(u), where @ summarizes all discrete indices, obey a
simple scaling in u. For that purpose, let us consider the
eigenvalue problem for h=z,>0

n—1

~ 1
H,(u)= [— Efﬁ + 2 4 + MZn:| Y=E,(u)y (49)
=1

and apply a scale transformation by substituting
uPiz — 2z, u’E, — E,. (50)

We recover an equation free of u, if all powers multiplying
various terms are the same, that is

=2B1=B1=Pr="" =B = B=B,+1=0, (51)

s0 By=(n—k+1)6—1 and also -28,=4. Hence 6=2/(2n
+1), so the eigenvalues scale like E, ,(u)=¢,  x¥",

where €, , is the spectrum of H,=H,(1).

It thus follows that, using Eq. (41), we get the scaling
relation for the Laplace transform of the integrated distribu-
tion

K(u;T) = T*2K (uT"*"?), (52)
K(s) = \2m Tr exp(— H,s2/m+D)
:\/;TZ exp(_ En,wSZ/(2n+1)). (53)

Hence, using Eq. (45), we obtain for the PDF of the MRH
P(h,,;T) and its moment generating function G(u;7T) in scal-
ing forms

P(hy;T) = 6 M(h,;T) =T"*7"P(h, T'?™),  (54)
G(v;T) = f dh,,P(h,,;T)e™’'m=GoT""?), (55)
0
where
G(s)= j dz P(z)e™*=sK(s) = \’/;TS Tr exp(— I:I,,SZ/(Z””))
0
= V’Ersz exp(— €, ,s2/?"D). (56)

Note that the same symbols K, P,G are used for single- and
double-argument functions, but that should not cause confu-
sion. Remarkably, the trace formula is exactly the same as in
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the case of the simple random walk n=1, with the Hamil-

tonian H | replaced by I:I,l. Note that, in the special case of
n=1, the scaling function of the MRH distribution (17) is
ultimately recovered from the above trace formula [8].

The scaled moment generating function Eq. (56) together
with the preceding scaling formulas are our main result here.
In the next two sections, we shall exploit the above results to
draw conclusions about the scale and the small argument
asymptote of the MRH distribution function.

VIII. STRONG-CORRELATION REGIME (1< a< «)

In order to evaluate the trace formula one would need the

energy eigenvalues of I:I,,(l). Although they are known [7]
only for n=1, assuming that these eigenvalues exist, the
scale of the MRH in T can be derived since Eq. (54) yields

(h,y~ T2, (57)

As one can see, the scale of (&,,) is the same as that of the
square root of the roughness [28], i.e., we have (h,,)
~ \{wy) just as in the case of random walks [7]. It should be
emphasized that while the above reasoning holds strictly for
a=2n, the exponent can, in fact, be continued naturally to
real values. Thus it is plausible to surmise that 7(*~V/2 is the
scale of the MRH for any @> 1. This power emerges quite
sharply for @=1.3,1.6,2,4 in numerical simulations as
shown on the first panel of Fig. 5.

Figure 5 also displays the second and third cumulants of
P(h,,, T). We can observe the emergence of well defined
scaling with T

k(@) ~ T8V, (58)

The scaling exponents are again equal to those of the cumu-
lants of the width distribution provided the &,,~ \Vw, corre-
spondence is used. This suggest that there is an intimate
connection between the fluctuations of MRH and those of the
signal width.

In order to see how the general shape changes as « is
increased, we have performed simulations as described in
Sec. III. The results are shown in Fig. 6 where we used
scaling by the average to present the scaling functions
D, (x).

The main features can be readily seen. The scaling func-
tion is a unimodal (single peaked) function which spreads
out as « increases and approaches its a— limit [see Eq.
(20)] rather fast. This is not entirely surprising since a glance
at Fig. 1 convinces one that the =10 signal already consists
of a single mode for all practical purposes, and thus the
MRH distribution will be very well approximated by the
®_.(x) function.

The function decays to zero extremly fast in the x—0
limit. The nonanalytical behavior and the actual functional
form at small x will be the subject of the next section. Here,
we call the reader’s attention to the fact that the region where
the nonanalytic asymptotic behavior dominates is shrinking
as «a increases and, according to Eq. (20), entirely disappears
in the a— % limit.
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FIG. 5. (Color online) Cumulants, &, of the MRH distribution
for various @>1 showing that x;(«) scales with system size, N
=T/, as k() ~N*"D2 The straight lines have the appropriate
asymptotic slopes k(a—1)/2.

The large x limit is harder to treat analytically and we
have only numerical evidence (Fig. 7) that the asymptotic
behavior for large x is given by

d(x) ~ nye_B"z, (59)

where the parameters B, C, and y depend on «. The above
functional form is consistent with the exact result at a=%
[see Eq. (20)]. At a=2, the ansatz of a Gaussian decay was
shown to be in agreement [7] with the large-order moments
of the distribution function. However, the possibility of a
prefactor x¥ was not excluded by the analysis. We found that
the generalized asymptote (59) with y=2 gives a superior fit
to the large-x (x> 1.5) behavior of the exactly known PDF.
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FIG. 6. (Color online) Numerically constructed MRH distribu-
tions for various 1 <a <. The a=% curve is the analytic result
given in Eq. (20). System sizes N = 16384 were sufficiently large to
observe the convergence of the PDFs within the width of the lines
drawn. Note that the =8 results are almost indistinguishable from
the a— o limit.

We have also fitted our numerical data in the region x
>1.5 for larger a’s, resulting in y=1.4 and y=1.1 for a
=3 and 4, respectively. The general trend of the exponent y
with increasing « is consistent with the a— o limit of y..
=1.

IX. INITIAL ASYMPTOTE

The trace formula (56) allows us to perform an
asymptotic analysis of the MRH distribution for small argu-
ments. The calculation is based on the large s behavior of the
moment generating function (56), wherein we assume that
there is a positive, a=2n-dependent, nondegenerate ground
state energy €,(a), which gives the leading term of the sum
(while « is strictly even, several results will lend themselves
to continuation). Under this assumption, the PDF in the
scaled variable z=h,,T""®" is asymptotically given by

d d
P(z) = f —S,G(s)e” ~ f —s,s\"% exp(sz — €ys7 (D).
21ri 21ri

(60)

The above integral can be calculated using the saddle point
method. For small z, the saddle point of the exponent is
located on the real axis at

% ( 26()
s =\ T

(a+1)z (61)

) (a+1)/(a-1)
and the integral in the neighborhood of the saddle point re-
duces to evaluating a Gaussian integral which yields the fol-
lowing asymptote:

P(z) = Cz™ exp(- B/ZP), (62)
where the parameters are given by
2
B=—", (63a)
a-1
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FIG. 7. (Color online) MRH distributions for (a) a=2 (b) «a
=3, and (c) @=4, calculated for system size N=16384 (solid lines).
The small and large x asymptotes (dashed lines) are also shown.
The small x behavior in the range 0 <x <1 is fitted to the functional
form (62) with the exponents 3,y taken from Eq. (63). The prefac-
tors B,C are fitting parameters [note that the formulas in Eq. (63)
contain an unknown parameter €)]. Large x data in the range x
>1.5 are fitted to the form (59), where B, C, and vy are fitting
parameters.

2+ 1
Y= a1’ (63b)
-1 2 (a+1)/(a-1)
B= aT( :01 ) (63c)
a
a+1( 2¢ (3/2)(a+1)/(a—1)
C= (63d)
a-1\a+1
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One should note that the exponents 8 and vy depend only
on « while the amplitudes also depend on the ground state
energy, €)(a@). The value of €(«a) is known only for a=2
where €)(2)=a;/ 12, with a;=2.3381 being the absolute
value of the first zero of the Airy function [7,8].

It should be emphasized that we did not scale the mean to
1, being ignorant about the full PDF as well as its mean for
general a. So if comparing the above formula to the numeri-
cally scaled PDF as function of x=z/(z) then the factors B, C
will change and become fitting parameters. Figure 7 demon-
strates the fit of Eq. (62) to simulation results for several a’s,
and we find that the fits are excellent in a surprisingly large
interval. It should be noted that in the large « limit the initial
slope is positive, so one expects a decreasing range of valid-
ity of the asymptote for increasing «, nevertheless, the fit on
Fig. 7 is quite good even for the largest a. The case a=3
demonstrates the continuation of the a=2n based formula,
and suggests that naive continuation of at least the exponents
B.v in Eq. (63) is justified.

Returning to the problem of scale dependence of the am-
plitudes B and C, we note that even if the full PDF is un-
known, one can construct a parameter from the small-x as-
ymptote which does not depend on the scale. In order to see
this, let us consider scaling by the average. With the rescaled
variable x, one has the PDF as (z) P(x(z)) and writing it again
in the form (62) yields the following change of the ampli-
tudes:

_B L C
C@F IRGta

It follows from the above expressions that the combination

B!

(64)

gl pr(as2)2

D= =
C c’

(a_ 1)(a+3)/2< 260 )(a+1)/2

2(a+2)/2v’a +1 (65)

a+1

remains independent of any scale change.

We should reiterate that the energy parameter €,(c) is not
known generally, but it is plausible to assume that it is a well
defined number. It may be determined numerically for «
=2n by a direct study of the corresponding local Hamil-
tonian. Remarkably, however, the above asymptotic formula
allows for the computation of €)(@) for any @>1 from a
numerical fit of the simulation result. Thus, precise MRH
statistics effectively extract the ground state energy level of
the Hamiltonian without solving the corresponding differen-
tial equation. Continuation of Eq. (62) for a#2n is also
natural here, but in this case we have a nonlocal Hamil-
tonian, whose spectral problem would be an even more chal-
lenging task to solve. Unfortunately, very high precision
simulations are required to determine the ground state energy
from the small-x asymptote. In particular, our simulated data
did not even allow the computation of the ground state en-
ergy to within a factor of 2 for the case of a=2 where the
lowest eigenvalue is known.

PHYSICAL REVIEW E 75, 021123 (2007)

X. MRH DISTRIBUTION FOR LARGE «

We have calculated the MRH distribution for the a—
limit in Sec. V. There we found that only the n=1 mode
survives and, as a result, the PDF (20) emerges. Here we
discuss a procedure for perturbatively computing the leading
corrections to Eq. (20) by taking into account the modes n
=2,3,....

First we reiterate that the amplitude of modes c, obey the
distribution with action (3) and measure proportional to
I1,,6(c,)c,dc,. Thus, separating the n=1 mode, the path in
Fourier representation is written as

o)

h(t) = a;sin(t) + E ,a, sin(nt + ¢,), (66)
n=2

where the &,=1/n%? is the mean square root deviation of the

amplitude of the nth mode, and the a,=c,/¢,’s are i.i.d. vari-
ables distributed according to

Po(z) = 2z6(z)exp(- 2%). (67)

Finally the phases ¢, are independent and uniformly distrib-
uted in [0,27]. The n=0 phase is omitted, because the
choice of the origin is arbitrary. Obviously, x measures the
height from the time average of the path, which is here set to
zero. Note that now time ¢ is in units of 27/T.

The leading correction from higher frequency modes can
be calculated independently for each mode, thus here we
only consider the nth mode. Then the path is

h(t) = a;sin(t) + €,a,sin(nt + @,) (68)

and the calculation to leading order is straightforward. We
compute the maximum of the path and then, knowing the
distribution of all parameters therein, we can determine the
PDF of the maximum. The details are presented in Appendix
B, where we obtain the perturbed PDF for &, T!~%?=7 as

P(2) = Py(2) + £2P, ,(2), (69)
with

Py ,(2) = (1=n*2)8(z) + 28" (2)/2 + e 0()[22° + (n> = 3)z].
(70)

The singular part needs some explanation here. As has been
discussed in Sec. IX, for finite @’s the PDF starts nonanalyti-
cally with zero initial slope for finite @’s, in contrast to the
a=% case, where the PDF has a finite slope. The nonanaly-
ticity is not expected to be recovered by any expansion.
Nonetheless, the formal expansion gives an explicit correc-
tion function P,,, with delta singularity at the origin. It is
plausible to conclude that while the expansion cannot be
correct overall, the singularity “tries” to take care of the
nonanalytic difference in the small-z behavior, while the non-
singular part is expected to be a faithful correction for z
>0. This leaves open the possibility that the large « expan-
sion is not convergent, rather it is asymptotic.

Next we scale the PDF to unit average. Using the result
(B8) from Appendix B one finds
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FIG. 8. (Color online) Difference AP(x) between the MRH dis-
tribution for large a and a=o, as defined in Eq. (73). We also
display the smooth part of the leading correction (74) from pertur-
bation theory added up from the modes n=2,3.

D(x) = D..(x) + 8;D, ,(x) (71)
where ®,.(x) is given in Eq. (20) and
®, ,(x)=(1- n%12)8(x) + x8' (x)12

+ e’”x2/40(x)§(n2 —1)(6x-m).  (72)

Formally, we can sum up the leading corrections for all n’s.
However, this is not a consistent approximation, because, for
instance, 8§=84, so the leading correction from n=4 is of the
same order as the quadratic one from n=2. Therefore we use
the sum of the corrections for only n=2,3 to test the predic-
tion. On Fig. 8 we display the correction

AD(x) = D(x) — D (x) (73)
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of the PDF from simulation for a series of a’s, together with
the theoretical prediction for corrections added up from the
modes n=2,3,

AD(x) = 8%@2,2()6) + 8%@2’3()&'). (74)

It should be mentioned that the sum of leading corrections
for all modes has a prefactor 37, (n>~1)e*={(a=2)-{(a).
This diverges for a@— 3%, so the series does not converge for
a= a,=3, which is the borderline for the differentiability of
the path. We cannot exclude that higher order corrections,
involving higher order differentiation of the path, further
tighten the range of convergence.

XI. COMPARISON WITH THE ROUGHNESS
AND THE MAXIMAL INTENSITY

Here we compare the statistical properties of 4, to those
of the roughness w,, i.e., of the mean square deviation, or
width of the trajectory (7). The latter was one of the first
global quantities of stochastic signals whose scaling proper-
ties and statistics were extensively studied for 1/f“ processes
[28].

One of the reasons for comparison is that both (4,,) and
\/@ scale similarly with 7 for =1 and, furthermore,
there are many common features at the level of their PDFs.
Namely, for o> 1, after scaling by the mean, the PDFs are
nondegenerate (each cumulant is finite), that is, scaling by
the mean is a natural representation of both PDFs. As «
— 1, the PDFs scaled by the mean approach a Dirac delta
and, in the range a= 1, they both lend themselves to scaling
by the standard deviation. Here an important difference
emerges. In the range 0.5<a=1 the roughness has a non-
trivial PDF while below the critical &=0.5 it becomes trivial,
i.e., the roughness becomes Gaussian distributed. On the
other hand, the MRH has the trivial FTG limiting distribu-
tion in the entire 0 < a<<1 region. We can only speculate that
the threshold near a=0.5 manifests itself in the MRH distri-
bution in its approach to the FTG limit, as suggested by the
finite-size dependence of the simulation results shown in Fig.
3. This, however, is just a numerical observation without
theoretical foundations as yet.

Further motivation for a closer comparison comes from
the similarities in the shape of the two families of PDFs in
the a>1 region. Fﬁt, in the a— o0 limit, the PDFs are the
same if the h,,~\w, correspondence is made. Second, for
finite «’s, the unimodal PDFs have asymptotes which are
similar for both small and large arguments. Specifically,
there is a Gaussian decay at large x, while the small x behav-
ior is dominated by an exponential nonanalytic term with a
power prefactor. Here, the comparisons can be made quanti-
tatively for small x, since analytic results are available for
general a.

Last but not least, a reason for a closer comparison comes
from the fact that the roughness can also be conceived as
obeying an EVS. Bertin and Clusel [13,49] made the remark-
able observation that since the roughness is essentially the
integrated power spectrum, i.e., the sum of nonnegative Fou-
rier intensities, it is in effect the maximum of positive partial
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sums. In general, the partial sums are correlated but, for the
special case of a=1, they correspond to the ordered se-
quence of i.i.d. variables. As a consequence, FTG distribu-
tion emerges for w, at =1, thus providing insight to an
earlier rather puzzling result [9] in connection with 1/f
noise. It then becomes a rather interesting open question how
the MRH distribution differs from the roughness distribution
for a>1 where the latter also describes the EVS of corre-
lated variables.

The initial asymptote of the MRH distribution (62) and
(63) should be compared with that for the roughness distri-
bution obtained in Appendix E of [10]

(I)w(x) = wa_ywexp(_ Bw/xﬁw), (75)

where the parameters are given by

Bw= L, (76a)
a-1
3a-1
M= Y ao1) (76b)
al(a-1)
B,=(a- 1)(.—) {(a)™ D (76¢)
a sin(7/a)

(277)(a_1)/2

C, ,
Va—1

( 7 )a/(a_l>[§(a)a]—<a+1>/2<a-”
sin(’ﬂ/a) |
(76d)

with {(«) denoting the Riemann’s zeta function. Note that
this asymptote does not contain unknown parameters such as
€, in the MRH distribution.

Interestingly, comparison with the exponents in the as-
ymptote of the MRH, Eq. (62), shows that the respective y’s
are the same, if \w, is considered, i.e., 27,,= y. Nevertheless,
the respective exponents in the prefactor, 283, +1 and S,
agree only at an accidental « and are otherwise different.

The present results on the small-x asymptote may also be
compared to the asymptote of the distribution of the maximal
Fourier intensity. It is defined as the maximal of the |c,|?
intensity components for a given realization of the path,
which obeys some PDF if the ensemble of 1/f“ paths is
considered. This was to our knowledge the first quantity
whose EVS was studied in the context of 1/f* signals [10].
Again, the overall shape of the PDF of the extremal intensity
is similar to those of the MRH and the roughness: Its initial
part is suppressed nonanalytically and has a single maxi-
mum, before smoothly decaying for large arguments. There
the critical a, where the FTG limit distribution emerges is
a,.=0, in contrast to the MRH and the roughness, where the
critical values are a.=1 and «,=0.5, respectively. As we
have shown in [10], written with «,, the powers in the
asymptotic formula for the maximal intensity and for the
roughness are the same
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1 B _3(a—ac)+2
’)/W_ ’YI_ z(a_ ac)

IBW:EI: > (77)

a-a,
where the exponents f;,y; are defined in the same way for
the initial asymptote of the PDF of the maximal intensity as
B, v,, were for the PDF of the roughness.

In conclusion, the respective PDFs of the MRH, the maxi-
mal intensity, and the roughness are similarly looking, uni-
modal functions, with nonanalytically slow initial behavior.
Despite the qualitative similarities, however, it is clear that
the three PDFs are quantitatively different. This is natural
since they describe different physical quantities. One may,
however, speculate that the similar features have their roots
in the divergent correlations present in the =1 region.

XII. FINAL REMARKS

It should be emphasized that we are only at the first stages
of understanding the effects of correlations on EVS. One of
the important tasks for future studies should be the under-
standing of the convergence properties in the 0<a<1
range. Although the limit distribution is known here, the con-
vergence is extremely slow. Since most of the environmental
time series of general interest (data on temperature, precipi-
tation, etc.) correspond to this range, as they exhibit generi-
cally correlations with power-type decay, and the length of
the series is naturally restricted, the development of a theory
of finite-size corrections is important. The much discussed
a—1 case is even more challenging since it appears to be
outside the reach of present computing abilities. Thus new
analytical approaches and ideas for numerical recipes are
called for.

Another relevant problem is the question of boundary
conditions. It is known from the a=2 case, where both pe-
riodic and free boundary conditions were investigated [7],
that the MRH distribution depends on boundary conditions.
Since the analysis of a real time series usually means cutting
it up into smaller pieces and making statistics out of the
properties of these subsequences, the appropriate boundary
conditions in this case are the so-called window boundary
conditions, when the window under consideration is embed-
ded in a longer signal. These boundary conditions have been
discussed in connection with the roughness distribution of
1/f% signals [28]. It has been found that the limit distribu-
tions depend on the window size (with respect to the length
of the entire system) and furthermore, the effects become
stronger as « increases. Clearly, similar studies should be
carried out for the EVS problem.

Finally, it remains to be seen if the investigations of the
effects of correlations, in particular the effects of strong cor-
relations, will allow us a universal classification of EVS
similar to that existing for thermodynamic critical points.
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APPENDIX A: DERIVATION OF THE PROPAGATOR

FOR a=2n
Here we show that the ansatz (27) indeed satisfies the
Fokker-Planck equation (25) with the coefficients
(28a)—(28c) Let us start out from Eq. (25)
| n-1
ﬁth = EoﬁGn - E Zké’k+lc;n’ (Al)
k=1
and substitute
Gn = Gn_1g, (AZ)

where the arguments are understood as in Eq. (27). Using the
fact that G,_, also satisfies Eq. (A1), we arrive at

n—1
1
3,G= Eafg +0,Gd, InG,_; - 2 240419 - (A3)
k=1
From Eq. (27) we have
WG =ayg’, (A4a)
76 = ()G, (Adb)
where, denoting a”-z—a’"-z° by x,
G'(x;0)=— %Q(x;tr), (A5a)
G'(x;0) = g(z;”) - 50w, (ASD)

and, furthermore, using the full exponent of the ansatz (26)
we have

n=1r
a
hInG, == —(d-z-a"*2). (A6)
k=1 O
Differentiation of the Gaussian G by time gives
1o’ 10>
C?lg: _ __Zg_ __2(an .z _aO,n .ZO)g/
20, 20,
+(dn_z_a~0,n.z0)gr’ (A7)

where we have condensed some z dependence by factoring
out G’. On the other hand, according to Egs. (A4) and (A5),
the right-hand side of Eq. (A3) yields

~ 1 nzg a'-z—a" .70 ,)
atg__2(01)<0'ﬁ+—0'ﬁ g

n—1 n—1

a)
_ arltglz _2(ak .z _aO,k ‘ZO) _ E ZkaZ+1g,~
k=1 O k=1

(AB)
Equating Eq. (A7) with Eq. (A8) should give the sought after
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equations for a,a’, and o. Comparing the z-independent fac-
tors of G in Egs. (A7) and (A8) gives

ol =(a})?. (A9)

Thus the full first lines on the right-hand side of Eqgs. (A7)
and (A8) are equal. In the rest we change the summation
variable k to / and then equate the respective factors of z; and
those of zg to obtain differential equations for the coefficients

a1
dl=—alY, e ., (A10a)
1=k l
n=1 7 o1
aa;’
A =—dlY o, (A10b)
=k O]

where we have used the condition that ai:ag’l =0 for k> 1.
Next, we determine the time dependence of the a’s by as-
suming it to be power law and requiring that terms in each
differential equation have the same power. Thus we separate
the time dependence, and for later purposes also factorize the
constants as

al=0"plc,, a" =" p"c,, (A11)

for all nonnegative integers n,k. We also set b} =0 for n<k
to ensure that a; vanishes for such indices. The c,’s are made
unambiguous by requiring b{=1 and, furthermore, since a/,
=1 thus b)=1/c,. Then Eq. (A9) gives

2n-1

2
o, =(c,)’

. Al2
2n-1 ( )
The parametrization in Eq. (A11) is justified by the fact that
substituting it into Eq. (A10) the ¢’s disappear, so what re-
mains are equations for the b’s as

n-1
ta=—(=-kbl -2 (21- )bk, (A13a)
I=k
1 n—1
b = - —— > (21— 1)b". (A13b)
n-— k 1=k

For a few small integer indices these equations can be
solved; whence the following general formulas can be sur-
mised:

i e (ntk=2)!
be=(=1) (n—k)! (k=1)! (Alda)
b = (= 1)" by, (A14b)

Note that Egs. (Al13a) and (A13b) are homogeneous linear
equations leaving room for overall factors in the solution.
They are set by the conditions (i) b{=1 and (ii) bg”’:bz.
Condition (i) was stated earlier below Eq. (A11), while (ii) is
equivalent to the requirement that G, depends on z, and 12
only through their difference.

One can confirm proposition (A14) by substituting it into
Eq. (A13) and then using the identities

021123-14



MAXIMAL HEIGHT STATISTICS FOR 1/f* SIGNALS

n-1

> QI-1)(k+1-2)! n-1(n+k=2)!
prt (1-k)! Tk (n—k=1)1"

(Al15a)

n—1

Q= 1D)(k+1-2)!
-1
20T

(n+k-2)!
(n—k-1)"
(A15b)

- (_ 1)n+]

which may be proved by induction.
Finally, with Eq. (A14) together with
ro
b (=2)"'(2n=3)!!

n

¢, = (A16)
we have all ingredients of Eq. (A11) to calculate the a’s, the
result being displayed in Eq. (28). The standard deviation o,
given in Eq. (28) follows then from Eqgs. (A12) and (A16).

APPENDIX B: LEADING PERTURBATION OF THE PDF
FOR LARGE « FROM THE »TH MODE

We start out from the Fourier representation (68) of the
path with one mode of frequency n beside the basic one (n
=1). From the condition 4'(zy))=0, we obtain the correction
in the position #=17/2+ 6, of the maximum to leading order

a, nw
6, =ne,— cos<—+(p,,). (B1)
a 2

Hence we can calculate the maximum to second order in g,
(the quadratic correction in &8, contributes only to cubic or-
der)

By = h(ty) = h(m/2) + h'(/2) 8, + 1121 (7/2) &

[ nm
~a,+¢g,a, s1n<7 + go,,)
nzsiai 2 niT
+———cos| —+¢,|. (B2)
261] 2

Now the PDF for the MRH #,, is obtained by averaging over
ai,a,,, in
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P(Z) = <5(Z - hm)>' (B3)
Expanding to second order, one finds
nm
P(Z) = <‘%Z - al)) - <5,(Z - al)|:8nanSin(7 + (Pn)
nZSiaﬁ 2( nm ) ] >
+—cos| —+ ¢,
2611 2
& nw
+ E" 8'(z- al)aﬁsin2<7 + cp,,) . (B4)

Note that here derivatives of the Dirac delta appear. Now
performing the averages yields [P, is given by Eq. (67)]

P(2) = Py(2) + £,P5.,(2), (B5)
n? > 1 2
P, ,(2) =— E(G(Z)e‘z )+ E(G(Z)ze‘Z ). (B6)

Differentiation of the terms with step functions gives

Py, (2)=(1- n*12)8(z) + 28" ()12 + et 0(2)[22° + (n> = 3)z],
(B7)

where the term proportional to z28(z) has been omitted, since
it does not contribute to the average and other moments of
nonsingular functions. Hence we obtain formula (70).

The mean to second order is best calculated from Egs.
(B5) and (B6) resulting in

<> \/7—T 2n2\/7_7
))=—__+¢
2 "4

(B8)

The scaled PDF is then obtained by the change of variable
from z to x=z/(z), and expanding the resulting expression to
second order in g, yields Egs. (71) and (72).
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